Iterative Methods for Linear Equations

Iterative methods for solving general, large sparse linear systems have been gaining popularity in many areas of scientific computing. A number of efficient iterative solvers were discovered and the increased need for solving very large linear systems triggered a noticeable and rapid shift toward iterative techniques in many applications. Also, iterative methods are gaining ground because they are easier to implement efficiently on high-performance computers than direct methods.

Those methods are called direct that terminate after finitely many operations with an exact solution (up to rounding errors). The best known direct method is Gauss elimination. In the general case the Gauss elimination for the solution of a system of n equations Ax=b requires 
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Because of round-off errors, direct methods become less efficient than iterative methods when they applied to large systems.  In addition, the amount of storage space required for iterative solutions on a computer is far less than the one required for direct methods when the coefficient matrix of the system is sparse.  Thus, especially for sparse matrices, iterative methods are more attractive than direct methods.

For the iterative solution of a system of equations, one starts with an arbitrary starting vector 
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 and computes a sequence of iterates 
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 for m=1,2,….:
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In the following 
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 is dependent only on 
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 determines the iteration method. The choice of the starting value 
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 is not part of that method.

Let A be an nxn nonsingular matrix and 

Ax=b

the system to be solved.
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We assume that the diagonal terms 
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 are all nonzero.

Then Jacobi’s method is
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Rewrite in matrix form, let D be the diagonal matrix containing the diagonal elements of A, and Aoff=A-D.Then
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The iterative process is terminated when a convergence criterion is satisfied.

Convergence Test

It is necessary to test for convergence of the iterates and there are two common tests:
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It is also relatively common to use the residual, 
[image: image22.wmf]e

£

k

r

 or 
[image: image23.wmf]0

r

r

k

e

£

 and it is called relative error test.

The convergence or divergence of the iterative process in the Jacobi method does not depend on the initial guess, but depends only on the character of the matrices themselves.  However, a good first guess in case of convergence will make for a relatively small number of iterations.

Defintion

An nxn matrix A is strictly diagonally dominant if
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It is a sufficient condition for Jacobi to convergence.

Estimate the error

Suppose that the eigenvalues are ordered such that
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Then note that
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  where 
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Therefore, we have
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so
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One may estimate 
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 by looking at the residuals. The limiting behaviour of 
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Thus one may estimate 
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 as follows by least squares
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This leads to the following error estimate:
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Algorithm of Jacobi method

There are two different algorithms to run Jacobi method

Algorithm 1:

for k=1:itmax+1


for i =1:n



S=0;



for j = 1:n




if (j~=i)





S=S+A(i,j)*x0(i,j)




end



end



x(i)=(-S+b(i))/A(i,i);


end

end

Algorithm 2:

Adiag=diag(A);

d=diag(Adiag);

Aoff=A-d;

for k=1:itmax+1


x=(b-Aoff*x)./Adiag

end

From the profile report, we know that method 1 needs more time than method 2 in calculation.

	　
	Time

	Method 1
	0.04

	Method 2
	0.02


So the following problem solved by jacobi method, we use algorithm 2.

Gauss-Seidel is almost the same as for Jacobi, except that each x-value is improved using the most recent approximations to the values of the other variables.
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Rewrite in matrix form, let Aup and Alow be the strictly upper and strictly lower triangular parts of A. Then
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Because the new values can be immediately stored in the location that held the old values, the storage requirement for x with the Gauss-Seidel method is half what it would be the Jacobi method and the rate of convergence is more rapid.

Example 1 Let A be 6x6 matrix

Assume 
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Result: Jacobi method convergent after 25 iterations and G-S method just needs 16 iterations. It shows that G-S method convergence faster.

	　
	Iterations
	Time

	Jacobi
	25
	0.02

	G-S
	16
	0.01


Notice: Echo on

ECHO ON – turns on echoing of commands inside Script files, so it may not necessary to use this command.
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