Chapter 2: Introduction to C Progranm ng

/* A first programin C */
mai n()

{
}

* The line(s) begin with "/*" and ends with "*/" indicating the |ine
is a comment.

* Programers insert comments to docunent prograns and inprove
programreadability.

* Conments do not cause the conputer to performany action when the
programis run; i.e., comments are ignored by the C conpiler and do
not cause any machi ne | anguage object code to be generat ed.

printf("Hello World.\n");

* The line "main()" is a part of every C program every programin C
begi ns executing at the function "main".

* The parentheses after "main" indicate that "main" is a program
buil ding block called a function. C prograns contain one or nore
functions.

* The left brace, "{", nust begin the body of every function (bl ock).
* A corresponding right brace, "}", nust end each function (bl ock).

* This pair of braces and the portion of the program between the
braces is called a block

* The line "printf("Hello World.\n");" instructs the conputer to
performan action, nanely to print on the screen the string of
characters marked by the quotation marks.

* The backslash(\) is called an escape character

* When encountering a backslash, "printf" |ooks ahead at the next
character and conbines it with the backslash to form an escape
sequence.

* The escape sequence "\n" neans newine, and it causes the cursor to
position to the beginning of the next line on the screen

\n Newl i ne

\ 't Tab

\r Carriage return
\a Al ert

\\ Backsl ash

\ " Doubl e quote

* The "printf" function is one of many functions provided in the C
Standard Library.

* The entire line, including "printf", its arguments within the
par ent heses, and the semicolon (;), is called a statnent.
* Every statement nmust end with a sem col on

* Standard library functions (like "printf") are not part of the C
progranm ng | anguage.

* | ndent the entire body of each function (block) one |evel of

i ndentation within the braces that define the body. This enphasizes
the functional structure of programs and hel ps make prograns easier
to read.

mai n()

{
printf("Hello ");
printf("World.\n");

}
*E g
mai n()
{
printf("Hello\nWrld. \n");
}

Anot her Sinple C Program Adding Two I ntegers

/* Addition program*/
#i ncl ude <stdio. h>

mai n()

{

int integerl, integer2, sum

printf("Enter first integer\n");
scanf ("%l", & ntegerl);
printf("Enter second integer\n");
scanf ("%l", & nt eger 2);

sum = integerl + integer?2;
printf("Sumis %\n", sum;

return O;

* The line "#include <stdio.h>" is a directive to the C preprocessor
* This tells the preprocessor to include the contents of the standard
i nput/out put header file (stdio.h) in the programbefore it is
conpi | ed.
* The header file contains,

1. information of the library functions

2. declarations of the library functions

3. information of the correctness of the functions called

* The line "int integerl, integer2, sum" is a declaration

* The letters "integerl", "integer2" and "sum are the nanes of
vari abl es.

* Avariable is a location in nenory where a value can be stored for
use by a program

* These variables are of type
wi Il hold integer val ues.

* Al variables nust be declared with a name and a data type

i mediately after the left brace that begins the body of a function
(e.g. "main") before they can be used in a program

* Several variables of the sane type may be declared in one

decl aration, or we could have witten three declarations, one for
each vari abl e.

int" which means that these vari abl es

* Avariable nane in Cis any valid identifier

* An identifier is a series of characters consisting of letters,
digits, and underscores that does not begin with a digit.

* Only the first 31 characters of an identifier are required to be
recogni zed by C conpil ers.

* Cis case sensitive

* Syntax error is caused when the conpiler cannot recogni ze a
statenent; i.e. are violations of the |anguage.

* Syntax error are also called conpiler errors, or conpiler-tine
errors.

* Alogic error has it effect at execution tine.

* Afatal logic error causes a programto fail and term nate

premat urely.

* Anonfatal logic error allows a programto continue executing but
to produce incorrect results.

* Sone of the words in the C language (e.g. int, return and if) are
keywords or reserved words of the | anguage. The progranmer nust be
careful not to use these words as identifiers such as variabl e nanes.

* The statenent "scanf("%", & ntegerl);" uses "scanf" to obtain a
val ue fromthe user.
* The "scanf" function takes input fromthe standard i nput which is
usual |y the keyboard.
* This "scanf" has two argunents:
1. "%" - the format control string: indicates the type of data
that should be input by the user. (The letter "d" stands for
deci mal integer.)
2. "& ntegerl" - the address/location of variable "integer1"
* When the computer executes "scanf", it waits for the user to enter
a value for variable "integerl".

* The assignnment statenent "sum = integerl + integer2;" calcul ates
the sum of variables "integerl" and "integer2", and assigns the

result to variable "sum' using the assignnent operator "=".

* The statenent "printf("Sumis %\n",sun);" uses the "printf"
function to print the literal "Sumis" followed by the nunerica
val ue of variable "sunf on the screen

* This printf has two argunents:

1. "Sumis %\n" - the format control string: it contains sone
literal characters to be displayed, and it contains the
conversion specifier "%" indicatin that an integer will be
printed.

2. "sum - the value to be printed.

* W coul d have conbined the two statenents:
printf("Sumis %\n", integerl + integer2);

* The statenent "return 0;" passes the value "0" back to the GS
envi ronnent .

Menory Concepts

* Variabl e names corresponded to | ocations in the conputer's nenory.
* Every variable has a nane, a type and a val ue.

* Whenever a value is placed in a nmenory | ocation, the value
overrides the previous value in that |ocation

* The val ues of variables may be used, but not destroyed, as the
conput er performed the cal cul ation

Arithmetic in C

Addi tion +
Subtracti on -

Multiplication *
Di vi si on /
Modul us %
* I nteger division yields an integer result.
* E.g. 7/4 evaluates to 1
* Parentheses are used in rmuch the sane nanner as in al gebraic
expressions. E.g. a * (b + ¢)

* (Qperator precedence:

1. ()
2. * |, or %
3. + or -

Deci sion Making: Equality and Rel ational Operators
* Executable C statenments either

1. performaction

2. nake deci sions
* "if" control structure allows a programto nake a deci sion based on
the truth of falsity of some statement of fact called a condition
* |f the condition is net (i.e., the condition is true) the statenent
in the body of the "if" structure is executed.
* Whet her the body statenent is executed or not, after the "if"
structure conpl etes, execution proceeds with the next statenent after
the "if" structure

* Conditions in "if" structures are formed by using the equality
operators and rel ational operators.

Equal ity ==
I nequal ity I =
Greater than >
Less than <
Greater than or equal to >=
Less than or equal to <=

* |n C, a condition may actually be any expression that generates a
zero (false) or nonzero (true) val ue.
* To aviod confusion, the equality operator is "double equals" and
t he assi gnnent operator is "single equal”
* E g.

/* Using if statenents, relationa

operators, and equality operators */
#i ncl ude <stdio. h>

mai n()

{
int numl, nun®;

printf("Enter two integers, and | will tell you\n");
printf("the relationships they satisfy: ");
scanf ("%l% ", &numl, &nun);

if (numl == nunR)
printf("%l is equal to %@\n", numl, nun®);

if (numl != nunR)
printf("%l is not equal to %\ n", nunil, nunR);

if (numl < nun®)
printf("%l is less than %\ n", numl, nun®);

4

if (numl > nun®)
printf("%l is greater than %\ n", nunil, nunR);

if (numl <= nunR)
printf("%l is |less than or equal to %\ n",
nunil, nunR);

if (numl >= nunR)
printf("%l is greater than or equal to %\ n",
nuni, nunR);

return O,
}
* |n C prograns, white space characters such as tabs, newines, and
spaces are nornally ignored.
* However, it is not correct to split identifiers.
* Precedence and associativity of the operators

O left to right
* | % left to right
+ - left to right
< <= > >= left to right

== |= left to right
= right to left

