Chapter 4: Program Contr ol

* Aloop is a group of instructions the conputer executes repeatedly
whi |l e sone | oop-continuation condition remains true.
* Two neans of repetition:
1. Counter-controlled repetition: is sonetinmes called definite
repetition because we know i n advance exactly how many tines the
| oop will be executed.
2. Sentinel-controlled repetition: is sonmetinmes called indefinite
repetition because it is not known in advance how many tines the
| oop will be executed.
* |n counter-controlled repetition, a control variable is used to
count the nunber of repetitions.
* Sentinel values are used to control repetition when
1. The precise nunmber of repetitions is not know in advance.
2. The loop includes statenents that obtain data each tine the
| oop is perforned.
* The sentinel value indicates "end of data" which must be distinct
fromregular data itens.

Counter-Control |l ed Repetition
* Counter-controlled repetition requires:
1. The name of a control variable (or |oop counter).
2. The initial value of the control variable.
3. The increnent (or decrenent) by which the control variable is
nodi fi ed each time through the | oop.
4. The condition that tests for the final value of the control

vari abl e.
* E g.
#i ncl ude <stdi o. h>
mai n()
{

int counter = 1;
whil e (counter <= 10)

{
printf("%l\n", counter);
++count er;
}
return O;
}
* O- ,
#i ncl ude <stdi o. h>
mai n()
{
int counter = O;
whi |l e (++counter <= 10)
printf("%l\n", counter);
return O;
}

The "For" Repetition Structure

* The "for" repetition structure handles all the details of
counter-controlled repetition automatically.

* E g.
#i ncl ude <stdio. h>
mai n()
{
int counter;

for (counter = 1; counter <= 10; counter++)
printf("%l\n", counter);
return O,
}
* Note that the sequence of instructions executed is exactly the sane
as the above "while" exanple.

* The general format of the "for" structure is
for (expressionl; expression2; expression3)
st at enent
1. expressionl: initializes the loop's control variable
2. expression2: is the | oop-continuation condition
3. expression3: increnents the control variable.
* | n nost cases the "for" structure can be represented with an
equi val ent "while" structure:
expressionl;
whi | e (expression2)
{
st at enent
expr essi on3;
}
* Often, "expressionl" and "expression2" are comua-separated |ists of
expressions. E.g.
for (numr2; num <= 100; sumt=num num=2)
* The three expressions are optional
1. If expression2 is omtted, C assunes that the condition is
true, thus creating an infinite | oop
2. Expressionl mght be onitted if the control variable is
initialized el sewhere in the program
3. Expression3 night be omitted if the increnent is cal cul ated by
statenments in the body, or if no increnent is needed.

The "For" Structure: Notes and Observations
* The initialization, |oop-continuation condition, and increnent can
contain arithnetic expression. E.g.

for (j=x; j< 4*x*y; j+=ylX)
* The "increment nmay be negative. E.g.

for (i=10; i>=0; i--)
* |f the | oop-continuation conditionis initially false, the body
portion of the loop is not perforned.
* |t is common to use the control variable for controlling repetition
whil e never nentioning it in the body of the | oop
* Al though the value of the control variable can be changed in the
body of a "for" loop, this can |lead to subtle errors. It is best not
to change it.

* E.g. A person invests $1000.00 in a saving account yielding 5
percent interest. Assuming that all interest is left on deposit in
t he account, calculate and print the anmobunt of nopney in the account
at the end of each year for 10 years. Use the following formula for
determ ni ng these anounts:
n
a = p(1+r)

where p is the principal, r is the annual interest rate, nis the
nunber of years, a is the anpunt on deposit at the end of the nth
year.

#i ncl ude <stdio. h>

#i ncl ude <mat h. h>

mai n()
{
int year;
doubl e anmount, principal = 1000.0, rate = 0.05;

printf("%s%®21s\n", "Year", "Amount on deposit");
for (year=1; year<=10; year ++)

{
amount = principal * powm(1.0 + rate, year);
printf("%dwRl. 2f\ n", year, anount);

}

return O,

* The type "double" is a floating-point type nuch like "float", but a
vari abl e of type "doubl e" can store a value of nuch greater magnitude
with greater precision than "float".

* Al though C does not include an exponentiati on operator, we can use
the standard library function "pow' for this purpose.

* Note that the header file "math. h" should be included whenever a
mat h function such as "pow' is used.

The Switch Miultiple-Selection Structure

* (ccasionally, an algorithmwll contain a series of decisions in
which a variable or expression is tested separately for each of the
constant integral values it nay assune, and different actions are

t aken.

* The "switch" structure consists of a series of "case" |abels, and
an optional "default" case.

* E g.
#i ncl ude <stdio. h>
mai n()
{
i nt grade;

int aCount = 0, bCount = 0, cCount = O,

dCount = 0, fCount = 0;
printf("Enter the letter grades.\n");
printf("Enter the EOF character to end input.\n");

while ((grade = getchar()) != ECF)
{

switch (grade)
{
case 'A': case
++aCount ;
br eak;
case 'B': case 'b':
++bCount ;
br eak;
case 'C : case
++cCount ;
br eak;
case 'D: case 'd':
++dCount ;
br eak;
case 'F': case 'f':
++f Count ;
br eak;
case '\n': case

br eak;
def aul t:
printf("lncorrect letter grade entered.");
printf(" Enter a new grade.\n");
br eak;
}
}

printf("\nTotals for each letter grade are:\n");
printf("A %\ n", aCount);
printf("B: %l\n", bCount);
printf("C %\ n", cCount);
printf("D: %\ n", dCount);
printf("E %\ n", eCount);
}

* Characters nmust be enclosed within single quotes to be recognized
as character constants (its ASCII| code).
* The function "getchar" (fromthe standard i nput/output |ibrary)
reads one character fromthe keyboard and store that character in
i nteger variable "grade".
* Characters are normally stored in variables of type "char"
* W can treat a character as either an integer or a character
depending on its use. E.g.

printf("The character (%) has the value %.\n","a',"'a');
* Assignment statenents have val ue can be useful for initializing
several variables to the sane value. E.g.

a=b=c=0;
* W use 'EOF (which normally has the value -1, which is an integer
val ue) as the sentinel value of "end of file".

* The keyword "switch" is followed by the variable nane "grade" in
parent heses. This is called the controlling expression

* The val ue of this expression is conpared with each of the "case"
| abel s.

* |f a match occur, the statenents for that "case" are executed.

* The "switch" structure is exited imediately with the "break"

st at enent .

* | f "break" is not used anywhere in a "switch" structure, then each
time a match occurs in the structure, the statements for all the
remai ning "case"s will be executed.

* |f no match occurs, the "default" case is executed.

* The "switch" structure is different fromall other structures in
that braces are not required around nmultiple actions in a "case"

* Readi ng characters one at a tine can cause sonme problens. To have
the programread the characters, they nmust be sent to the conmputer by
pressing the return key on the keyboard.

* This causes the newine character to be placed in the input after
the character we wi sh to process.

* often, this newline character nust be specially processed to make

t he program work correctly.

* When using the "switch" structure, remenber that it can only be
used for testing a constant integral expression

The "Do/ Wil e" Repetition Structure

* The "do/while" structure tests the | oop-continuation condition
after the | oop body is perforned, therefore the | oop body will be

4

executed at |east once.

* E g.
#i ncl ude <stdio. h>
mai n()
{ .
int counter = 1;
do
{

printf("%l ",counter);
} while (++counter <= 10);
return O,

}

The Break and Continue Statenents
* The "break" statenent, while executed in a |loop or "switch"
structure, causes inmmediate exit fromthe structure
* Conmon uses of the "break" statenent are to escape early froma
| oop, or to skip the renmainder of a "switch" structure
* E g.

#i ncl ude <stdio. h>

mai n()

{

int x;

for (x=1; x<=10; Xx++)

{
i f (x==b)
br eak;
printf("% ", x);
}
printf("\nBroke out of loop at x == %\ n", x);
return O,

}

* The "continue" statenent, when executed in a |loop structure, skips
the remaining statenents in the body of that structure, and perforns
the next iteration of the |oop

* E g.
#i ncl ude <stdi o. h>
mai n()
{ .
int Xx;

for (x=1; x<=10; Xx++)

{

i f (x==b)

conti nue;

printf("% ", x);
}
printf("\nUsed continue to skip printing the value 5\n",

X);

return O,

}

Logi cal QOperators

* C provides logical operators that nmay be used to form nore conpl ex

5

conditions by conbining sinple conditions.
* The | ogical operators are

1. & - logical AND

2. || - logical OR

3. ! - logical NOT

* Logical AND ensures that two conditions are both true before we
choose a certain path of execution
* E g.
if (gender == 1 && age >= 65)
++seni or Fenal es;
* Truth table for the &&

expressionl expr essi on2 expressionl &% expression2
0 0 0
0 nonzero 0
nonzero 0 0
nonzero nonzero 1

* C accepts any nonzero val ue as true.

* Logical OR ensures that either or both of two conditions are true
bef ore we choose a certain path of execution
* E g.
if (senmesterAverage >= 90 || final Exam >= 90)
printf("Student grade is An");
* Truth table for the |]|:

expressionl expr essi on2 expressionl || expression2
0 0 0
0 nonzero 1
nonzero 0 1
nonzero nonzero 1

* The | ogical negation operator is placed before a condition when we
are interested in choosing a path of execution if the origina
condition is fal se
* E g.
if (!(grade == sentineVal ue))
printf("The next grade is %\n", grade);
* Truth table for the !

expressionl I expressionl
0 1
nonzer o 0

