Chapter 5: Functions

* Experience has shown that the best way to develop and maintain a
|arge programis to construct it froma snmaller pieces or nodul es
each of which is nore manageabl e than the original program

Program Modules in C
* Modules in C are called functions/
* C prograns are typically witten by conbining new functions the
programer wites with "pre-packaged" functions available in the C
standard library.
* The programrer can wite functions to define specific tasks that
may be used at nmany points in a program
* The actual statenents defining the function are witten only once,
and the statenments are hidden from other functions.
* Functions are invoked by a function call. The function cal
speci fies:
1. function nane
2. information (argunents) that the called function needs in
order to performits designed task.
* The called function reports back - or returns - to the calling
function when its task is conpleted, with a return val ue.

Mat h Li brary Functions

* Math library functions allow the progranmmer to performcertain
comon nmat hemati cal cal cul ati ons.

* Functions are nornally used in a programby witing the nane of the
function followed by a left parenthesis followed by the argunment (or
a comm separated |ist of argunents) of the function followed by a
ri ght parenthesis.

* Commonly used math library functions:

sqgrt(x) - square root of x

exp(x) - exponential function of e

log(x) - natural logarithmof x (base e)

| 0g10(x) - logarithm of x (base 10)

fabs(x) - absolute val ue of x

ceil(x) - rounds x to the smallest integer not |less that x
floor(x) - round x to the largest integer not greater than x
pow(x,y) - X raised to power y

. fnod(x,y) - renmainder of x/y as a floating point nunber

10. sin(x) - trigononetric sine of x (x in radians)

11. cos(x) - trigononetric cosine of x (x in radians)

12. tan(x) - trigononetric tangent of x (x in radians)

CONoOOEWNE

Functi ons
* Al variable declared in function definitions are |ocal variables -
they are known only in the function in which they are defined.
* Most functions have a |ist of paraneters.
* The paraneters provide the neans for conmmunicating information
bet ween functi ons.
* A function's paraneters are also local variables (with initia
val ues).
* There are several notivations for "dividing" code into procedures:
1. nore nmanageabl e.
2. software reusability
3. to avoid repeating code

Function Definitions

#i ncl ude <stdi o. h>
int square(int);
mai n()

{

int x;

for (x=1; x<=10; Xx++)
printf("%l ",square(x));

printf("\n");
return O,
}
int square(int y)
{
return y*y;
}

* Function "square" is invoked or called in "main" within the
"printf" statemnent.

* Function "square" receives a copy of the value of

paranmeter "y".

* The result is passed back to the "printf" function in "nmain" where
"square" was invoked, and "printf" displays the result.

x" in the

* The definition of "square" shows that "square" expects an integer
paranmeter "y".

* The keyword "int" preceding the function nane indicates that
"square" returns an integer result.

* The "return" statement in "square" passes the result of the

cal cul ati on back to the calling function

* The line "int square(int);" is a function prototype.

* The conpiler refers to the function prototype to check that calls
to "square" contain the correct return type, the correct nunber of
argunents, the correct argunent types, and that the argunents are in
the correct order.

* The fornmat of a function definition is:
return-val ue-type function-name(paraneter-|ist)

{

decl arati ons

statenents

}
* The return-val ue-type "void" indicates that a function does not
return a val ue.
* An unspecified return-value-type is always assuned by the conpiler
to be "int".
* The paraneter-list is a comma-separated |list containing the
decl arations of the paranmeter received by the function when it is
cal I ed.
* A function cannot be defined inside another function under any
ci rcunst ances.

* There are three ways to return control to the point at which a
function was i nvoked:
1. the function-ending right brace is reached, if it does not

2

return a result.

2. "return;", if it does not return a result.
3. "return expression;", returns the value of expression to the
caller.

* E g.

#i ncl ude <stdio. h>
int maxi mun{int,int,int);
mai n()
{
int a, b, c;
printf("Enter three integers: ");
scanf ("%l%%", &a, &b, &c);
printf("Maxi mumis: %\ n", naxi mum(a, b, c));

return O,
}
int maxi mun{int x, int y, int z)
{ .
int nmax;
max = X;
if (y > max)
max =y,
if (z > max)
max = z;
return max;
}

Header Files

* Each standard library has a correspondi ng header file containing:
1. the function prototypes for all the functions in that library
2. definitions of various data types
3. constants needed by those functions.

* E g.
<mat h. h> - Contains function prototypes for math library
functions.
<stdio.h> - Contains function prototypes for the standard 1/0O
library functions, and information used by them
<stdlib.h> - Contains function prototypes for conversions of
nunbers to text and text to numbers, nmenory allocation, random
nunbers, and other utility functions.
<string.h> - Contains function prototypes for string processing
functions.
<tinme.h> - Contains function prototypes and types for
mani pul ating the tinme and date.

* Programer-defined header files should also end in ".h".
* A programmer-defined header file can be included by using the
"#i ncl ude" preprocessor directive.

Calling Functions: Call by Value and Call by Reference

* When argunents are passed call by value, a copy of the argunent's
val ue is nmade and passed to the called function

* Changes to the copy do not affect an original variable' s value in
the caller.

* When an argunent is passed call by reference, the caller actually

3

allows the called function to nodify the original variable's val ue.
* Call by value prevents the accidental side effects by nodifying the
val ue of the caller's original variable.

* In C all calls are call by val ue.
* |t is possible to sinulate call by reference by using address
operators and indirection operators (call by address).

* E g.
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

mai n()
{

int i;

srand(ti me(NULL));
for (i=1; i<=20; i++)

{
printf("9d0d", 1+(rand() %®));
if (i == 0)
printf("\n");
}
return O,

}

St orage O asses

* Each identifier in a programhas other attributes including storage
cl ass, storage duration, scope and |inkage.

* C provides four storage cl asses:

1. auto

2. register
3. extern
4, static

* An identifier's storage class helps deternine a identifier's
storage duration, scope, and |inkage.

* An identifier's storage duration is the period during which that
identifier exists in nmenory.

* An identifier's scope is where the identifier can be referenced in
a program

* An idenifier's linkage determ nes for a nultiple-source-file
program whether an identifier is known only in the current source
file or in any source file with proper declarations.

* The four storage class specifiers can be splitted into two storage
durati on:

1. automatic storage duration : auto, register

2. static storage duration: extern, static

* Variables with automatic storage duration are
1. created when the block in which they are declared is entered
2. exist while the block is active
3. destroyed when the block is exited.
* A function's local variables normally have automatic storage
duration. E.g.

auto float x, vy;
* Local variables have automatic storage duration by default, so the
"auto" keyword is rarely used.

* The storage class specifier "register" suggest that the compiler
mai ntain the variable in one of the conputer's high-speed hardware
registers.
* The conpiler may ignore "register" declarations.
* E g.
register int counter =1
* The "register"” keyword can be used only with variables of automatic
st orage duration.

* |dentifiers of static storage duration exist fromthe point at
whi ch the program begi ns execution.
* For variables, storage is allocatedand initialized once when the
program begi ns execution
* Even though the variables exist, this does not nean that these
identifiers can be used throughout the program
* Two type of identifiers with static storage duration
1. external identifiers (such as global variables and function
nanes)
2. local variables declared with the storage class specifier
"static".
* d obal variables are created by placing variable declarations
outside any function definition, and they retain their val ues
t hr oughout the execution of the program
* d obal variables and functions can be referenced by any function
that follows their declarations or definition in the file.

* Local variables declared with the keyword "static" are still known
only in the function in which they are defined.
* The next tinme the function is called, the "static" |ocal variable
contains the value it had when the function |ast exited.
* E g.

static int count = 1;

Scope Rul es
* The scope of an identifier is the portion of the programin which
the identifier can be refernced.
* The four scopes for an identifier are:
1. function scope
2. file scope
3. block scope
4. function-prototype scope

* Labels (an identifier followed by a colon such as "start:") are the
only identifiers with function scope.

* Label s can be used anywhere in the function in which they appear
but cannot be referenced outside the function body.

* An identifier declared outside any function has file scope.

* Such an identifier is "known" in all functions fromthe point at
which the identifier is declared until the end of the file.

* E.g. A@obal variables, function definitions, etc

* |dentifiers declared inside a bl ock have bl ock scope.
* Block scope ends at the terminating right brace ("}") of the bl ock

5

* E.g. Local variables, function paraneters.

* Any bl ock may contain variable declarations.

* \Wen bl ocks are nested, and an identifier in an outer block has the
same nane as an identifier in an inner block, the identifier in the
outer block is "hidden" until the inner block term nates.

* The only identifiers with function-prototype scope are those used
in the paraneter list of a function prototype.

* E g.
#i ncl ude <stdio. h>
void a(void);
void b(void);
void c(void);

int x = 1;

mai n()

{

int x = 5;

printf("local x in outer scope of main is %\n", X);

{

int x = 7;

printf("local x in inner scope of main is %\n", X);

}

a();

b();

c();

a();

b();

c();

printf("local x in mainis %\n", X);
return O,

}

voi d a(voi d)

{
int x = 25;

printf("\nlocal x in ais %l after entering a\n", Xx);
++X;
printf("local x in ais %l before exiting a\n", x);

}

voi d b(voi d)
{

static int x = 50;

printf("\nlocal static x in ais % after entering b\n",
X);
++X;

printf("local static x is % on exiting b\n", x);

}

void c(void)

{

printf("\nglobal x is %d on entering c\n", x);
x *= 10;
printf("global x is % on exiting c\n", Xx);

}

Recur si on
* Arecursive function is a function that calls itself either
directly or indirectly through another function
* Arecursive function is called to solved a problem
* The function actually knows how to solve only the sinplest
case(s), or so-called base case(s).
* |f called with a base case, the function stops recursively calling
itself and sinply returns to its caller
* |f called with a nore conplex problem the function divides the
probleminto two conceptual pieces: a piece that it knows how to do
and a piece that it does not know how to do.
* To make recursion feasible, the latter piece nmust resenble the
original problem but be a slightly sinpler or slightly smaller
version of the original problem
* Because this new problem | ooks |ike the original problem the
function launches (calls) a fresh copy of itself to go to work on
the smaller problem- this is referred to as a recursive call and is
al so called the recursion step.
* The recursion step executes while the original call to the function
is still open, i.e., it has not yet finished executing.
* At a point, the function recogni zes the base case, return a result
to the previous copy of the function, and a sequence of return ensues
all the way up the line until the original call of the function
eventually returns the final result.
* E g.

#i ncl ude <stdio. h>

I ong factorial (long);

mai n()

{

int i;

for (i=1; i<=10; i++)

printf("oRd! = %d\n", i, factorial(i));
return O,
}
I ong factorial (I ong nunber)
{
i f (nunber <= 1)
return 1,
el se
return (nunber * factorial (nunber - 1));
}

Random Nunber Generati on
* The el enent of chance can be introduced into conputer applications
by using the "rand" function in the C standard library.
* E g.

i = rand(i);
* The "rand" function generates an integer between 0 and "RAND MAX' (a
synbolic constant defined in the <stdlib. h>).

* The function prototype for the "rand" function can be found in
<stdi 0. h>.

* W can use the nodul us operator (% in conjunction with "rand" as
fol | ows

rand() % 6
to produce integers in the range 0 to 5.
* This is called scaling. The nunber "6" is called the scaling factor
* W then shift the range of nunbers produced by addi ng an integer

* The sequence of pseudo-random nunbers repeats itself each tinme the
programis execut ed.

* The "srand" function takes an "unsigned"” integer argunment and seeds
the "rand" function to produce a different sequence of random nunbers
for each execution of the program

* A two-byte "unsigned int" can have only positive values in the range
0 to 65535.

* The conversion specifier "% " is used for "unsigned" in "printf" and
"scanf".

* W\ may use statenent |ike
srand(time(NULL));
to random ze without the need for entering a seed each tine.
* The "tinme" function returns the current tine of day in seconds.
* The function prototype of "time" is in <tinme.h>.

#i ncl ude <stdlib. h>
#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

mai n()
{
int i;
unsi gned seed,;

srand(ti me(NULL));
for (i =1; i <= 10; i++)

{
printf("9d0d", 1 + (rand() %6));
if (i %5 == 0)
printf("\n");
}
return O,

* Execrise

A player rolls two dice. Each die has six faces. These faces contain
1, 2, 3, 4, 5 and 6 spots. After the dice have cone to rest, the sum
spots on the two upward faces is calculated. If the sumis 7 or 11 on
the first throw, the player wins. If the sumis 2, 3, or 12 on the
first throw (called "craps"), the player loses. If the sumis 4, 5,

6, 8 9, or 10 on the first throw, then that sum becones the player's
"point". To win, you nust continue rolling the dice until you "make
your point". The player loses by rolling a 7 before making the point.

