Chapter 7: Pointers

* Pointers are variables that contain nmenory addresses as their
val ues.

* A variable nane directly references a val ue

* A pointer indirectly references a val ue.

count Ptr count
+----- + +----- +
| 213f - +-------- - - - - > 7
+----- + +----- +
0176 213f

* The decl aration:
int *countPtr, count;
* The "*" only applies to "countPtr" in the declaration, it indicates
that the variable being declared is a pointer
* Pointers can be declared to point to objects of any data type
(i ncl udi ng user-defined).

* A pointer may be initialized to "0", "NULL", or an address.
* A pointer with the value "NULL" points to nothing.

* The value "0" is the only integer value that can be assigned
directly to a pointer variable.

Poi nter QOperators

* The "&", or address operator, is a unary operator that returns the
address of its operand.

* E g.
int y =5;
int *yPtr;
ybPtr = &y;

* This statement assigns the adress of the variable
variable "yPtr".

* The operand of the address operator nust be a variable; it cannot
be constants, expressions, or variables declared with the storage
class "register".

y" to pointer

* The "*" operator, conmonly referred to as the indirection operator
or dereferencing operator, returns the value of the object to which
its operand (i.e., a pointer) points.
* E g.

printf("%", *yPtr);

Cal ling Functions by Address
* All function calls in C are call by val ue.
* Many functions require the capability to
1. nodify one or nore variables in the caller
2. pass a pointer to a large data object to avoid the overhead of
passi ng the object call by value (which requires naking a copy of
t he object).
* |n C, when calling a function with argunments that shoul d be
nodi fi ed, the addresses of the arguments are passed.
* When the address of a variable is passed to a function, the
i ndirection operator ("*") may be used in the function to nodify the
value at that location in the caller's rnarmry.1

#i ncl ude <stdi o. h>
i nt cubeByVal ue(int);
mai n()
{
i nt nunber = 5;

printf("The original value of nunber is %\ n", nunber);
nunber = cubeByVal ue(nunber);
printf("The new val ue of nunber is %\ n", nunber);

return O;
}
i nt cubeByVal ue(int n)
{

return n * n * n;
}

#i ncl ude <stdio. h>
i nt cubeByReference(int *);
mai n()
{
i nt nunber = 5;

printf("The original value of nunber is %\ n", nunber);
cubeByRef er ence(&unber) ;
printf("The new val ue of nunber is %\ n", nunber);

return O,
}
i nt cubeByReference(int *nPtr)
{
*nPtr = (*nPtr) * (*nPtr) * (*nPtr);
}

* The conpiler does not differentiate between a function that
receives a pointer and a function that receives a single-subscripted
array.
* That is, the following two forns are (al nost) the saneg,

i nt cubeByReference(int *nPtr)

And
i nt cubeByReference(int nPtr[])

* The "const" qualifier enables the programer to informthe conpiler
that the value of a particular variable should not be nodified.

* Always award a function enough access to the data in its paraneters
to acconplish its specified task, but no nore.

* An array hame is a constant pointer to the beginning of the array.
* All data in the array can be accessed and changed by using the
array nane and array index.

* E g.

char string[] = "characters”;
char character = 'C;
string = &character; /* error */

* Pointers that are declared "const" nust be initialized when they
are decl ar ed.
* A constant pointer:
char string[] = "characters”;
* A non-constant pointer to a contant data:
const char *string;
* A constant pointer to non-constant data:
int * const ptr = &x;
* A constant pointer to a constant data:
const int *const ptr = &x;

"sizeof " operator

* C provides the special unary operator "sizeof" to determne the
size in bytes of an array (or any other data type) during program
conpi |l ati on.

* E g.
#i ncl ude <stdi o. h>
mai n()
{

float array[20];
printf("The nunber of bytes in the array is %\ n",
si zeof (array));
return O,
}
* To determine the nunber of elenents in the array,
arraysi ze = sizeof (array) / sizeof (double);
* (perator "sizeof" can be applied to any variable nane, type, or
const ant .
* When applied to a variable name (that is not an array nane) or a
constant, the nunber of bytes used to store the specific type of
variabl e or constant is found.

* E g.
#i ncl ude <stdio. h>
mai n()
{
printf(" si zeof (char) = %\ n"
" si zeof (short) = %\ n"
" sizeof (int) = %\ n"
" si zeof (1 ong) = %\ n"
" si zeof (float) = %\ n"
" si zeof (doubl e) = %\ n"
" sizeof (I ong double) = %\ n",
si zeof (char), sizeof(short), sizeof(int),
si zeof (1 ong), sizeof (float), sizeof(double),
si zeof (1 ong doubl e));
return O,
}

Poi nt er Expressions and Pointer Arithmetic

* Pointers can be valid operands in arithnetic expressions,
assi gnment expressions, and conpari son expressions.

3

* A pointer may be
1. incremented (++)
2. decrenented (--)
3. an integer adds to a pointer (+ or +=)
4. an integer substracts froma pointer (- or -=)
5. one pointer substracts from anot her
* When an integer is added to (or substracted from a pointer, the
pointer is not sinmply increnented (or decrenented) by the integer
but by that integer times the size of the object to which the pointer
refers.
* Therefore,
a = v[20];
and
a = *(v+20);
is the same, no matter what the type of array "v" is.
* Pointer arithnetic is neaningless unless perforned on an array.

* A pointer can be assigned to another pointer if both pointers are
of the sane type

* Xherw se, a cast operator nust be used to convert the pointer on
the right of the assignnment to the pointer type on the left of the
assi gnment .

* The exeception to this rule is the pointer to "void" (i.e.

"void *") which is a generic pointer that can represent any pointer

type.
* A pointer to "void" cannot be dereferenced.

* Pointers can be conpared using equality and rel ational operators.
* This can be neaningl ess unl ess the pointers point to nenbers of the
same array.

The Rel ationshi p between Pointers and Arrays
* An array name can be thought of as a constant pointer
* Pointers can be used to do any operation involving array indexing.
* E g.
int b[5], *bPtr;

bPtr = b; /* or bPtr = &b[0]; *
b[3] = 10; /* or *(bPtr + 3) = 10; */

/* or *(b + 3) = 10; */
bPtr[1] = 2; /* or Db[l] = 2; */

/* or *(bPtr + 1) = 2; */
bPtr = &J[3]; [/* or bPtr = bPtr + 3; */

* Question: Then "bPtr[1]" = ??

* The "3" in the above expression is the offset to the pointer

* When the pointer points to the beginning of an array, the offset
value is identical to the array index.

* E g.
#i ncl ude <stdi o. h>
mai n()
{

int i, offset, b[]={10, 20, 30, 40};
int *bPtr = b;

printf("Array b printed with:\n"
"Array indexing notation\n");
for (i=0; i<4; i++)
printf("b[o%] = %\n", i, b[i]);

printf("\nPointer/offset notation where \n"
"the pointer is the array nanme\n");
for (offset=0; offset<4; offset++)
printf("*(b + %) = %\n", offset, *(b+offset));

printf("\nPointer index notation\n");
for (i=0; i<4; i++)
printf("bPtr[%] = %\n", i, bPtr[i]);

printf("\nPointer/offset notation\n");
for (offset=0; offset<4; offset++)
printf("*(bPtr + %) = %\ n", offset,
*(bPtr+of fset));
return O,

}

#i ncl ude <stdio. h>
void copyl(char *, const char *);
voi d copy2(char *, const char *);
mai n()
{
char stringl[10], *string2 = "Hello";
string3[10], string4[] = "Good Bye";

copyl(stringl, string2);
printf("stringl = %\n", stringl);

copy2(string3, string4);
printf("string3 = %\n", string3);

return O,
}
voi d copyl(char *sl1, const char *s2)
{
int i;
for (i=0; s1[i] = s2[i]; i++);
}
voi d copy2(char *sl1, const char *s2)
{
for (; *sl = *s2; sl++, S2++);
}

Arrays of Pointers
* Arrays nmay contain pointers.
* A common use of such a data structure is to forman array of
strings.
* Each entry in an array of strings is actually a pointer to the
first character of a string.
* E g.

char *suit[4] = {"Hearts", "D anonds", "C ubs", "Spades"};
* Each of these strings is stored in nenory as a NULL-term nated
character string.

* Although it appears as though these strings are being placed in the

"Sui tll
* Thus,

array, only pointers are actually stored in the array.
even though the "suit" array is fixed in size, it provides

access to character strings of any |ength.

* E g.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <tine. h>

void shuffle(int [][13]);
voi d deal (const int [][13], const char *[], const char *[]);

mai n()
{
char *suit[4] = {"Hearts", "D anonds", "C ubs"
" Spades"};
char *face[13] = {"Ace", "Deuce", "Three", "Four",
"Five", "Six", "Seven", "Eight",
"N ne", "Ten", "Jack", "Queen"
"King"};
int deck[4][13] = {0};

srand(time(NULL));
shuf fl e(deck);

deal (deck, face, suit);
return O,

}

voi d shuffle(int wheck[][13])
{

int card, row, columm;

for (card=1; card<=52; card++)
{
row = rand() % 4,
colum = rand() % 13;
whi | e (wDeck[row] [col unm]! =0)
{
row = rand() % 4,
colum = rand() % 13;

}
wDeck[row] [col um] = card;

}

voi d deal (const int wbDeck[][13], const char *wFace[],
const char *wSuit[])

{
int card, row, colum;
for (card=1; card<=52; card++)
for (row=0; row<4; rowt+)
for (colum=0; colum<13; col um++)
i f (wDeck[row][colum] == card)
printf("%s of % 8s%",
wFace[col um], wSuit[row],
(card¥)==0?"\n":"\t");
}

Poi nter to Functions

* A pointer to a function contains the address of the function in
nenory.
* A function nane is the starting address in nenory of the code that
perforns the function's task.
* Pointers to functions can be

1. passed to functions

2. returned from functions

3. stored in arrays

4. assigned to other function pointers
* E g.

voi d bubbl e(int *work, const int size,
int (*conmpare)(int, int))

{%.kk;conpare)(mork[count], wor k[count +1]))

* The paraneter:

int (*conmpare)(int, int)
tells "bubble" to expect a paraneter that is a pointer to a function
that receives two integer paraneters and returns an integer result.

