
Chapter 7: Pointers
===================
* Pointers are variables that contain memory addresses as their
values.
* A variable name directly references a value
* A pointer indirectly references a value.

 countPtr count
 +-----+ +-----+
 |213f-+------------->| 7 |
 +-----+ +-----+
 0176 213f

* The declaration:
 int *countPtr, count;
* The "*" only applies to "countPtr" in the declaration, it indicates
that the variable being declared is a pointer.
* Pointers can be declared to point to objects of any data type
(including user-defined).

* A pointer may be initialized to "0", "NULL", or an address.
* A pointer with the value "NULL" points to nothing.
* The value "0" is the only integer value that can be assigned
directly to a pointer variable.

Pointer Operators

* The "&", or address operator, is a unary operator that returns the
address of its operand.
* E.g.
 int y = 5;
 int *yPtr;

 yPtr = &y;

* This statement assigns the adress of the variable "y" to pointer
variable "yPtr".
* The operand of the address operator must be a variable; it cannot
be constants, expressions, or variables declared with the storage
class "register".

* The "*" operator, commonly referred to as the indirection operator
or dereferencing operator, returns the value of the object to which
its operand (i.e., a pointer) points.
* E.g.
 printf("%d", *yPtr);

Calling Functions by Address

* All function calls in C are call by value.
* Many functions require the capability to
 1. modify one or more variables in the caller
 2. pass a pointer to a large data object to avoid the overhead of
 passing the object call by value (which requires making a copy of
 the object).
* In C, when calling a function with arguments that should be
modified, the addresses of the arguments are passed.
* When the address of a variable is passed to a function, the
indirection operator ("*") may be used in the function to modify the
value at that location in the caller's memory.

1

* E.g.
 #include <stdio.h>
 int cubeByValue(int);
 main()
 {
 int number = 5;

 printf("The original value of number is %d\n", number);
 number = cubeByValue(number);
 printf("The new value of number is %d\n", number);
 return 0;
 }

 int cubeByValue(int n)
 {
 return n * n * n;
 }
* E.g.
 #include <stdio.h>
 int cubeByReference(int *);
 main()
 {
 int number = 5;

 printf("The original value of number is %d\n", number);
 cubeByReference(&number);
 printf("The new value of number is %d\n", number);
 return 0;
 }

 int cubeByReference(int *nPtr)
 {
 *nPtr = (*nPtr) * (*nPtr) * (*nPtr);
 }

* The compiler does not differentiate between a function that
receives a pointer and a function that receives a single-subscripted
array.
* That is, the following two forms are (almost) the same,
 int cubeByReference(int *nPtr)
 {

 }
And
 int cubeByReference(int nPtr[])
 {

 }

Using the "Const" Qualifier with Pointers
===
* The "const" qualifier enables the programmer to inform the compiler
that the value of a particular variable should not be modified.
* Always award a function enough access to the data in its parameters
to accomplish its specified task, but no more.

* An array name is a constant pointer to the beginning of the array.
* All data in the array can be accessed and changed by using the
array name and array index.

2

* E.g.
 char string[] = "characters";
 char character = 'C';

 string = &character; /* error */

* Pointers that are declared "const" must be initialized when they
are declared.
* A constant pointer:
 char string[] = "characters";
* A non-constant pointer to a contant data:
 const char *string;
* A constant pointer to non-constant data:
 int * const ptr = &x;
* A constant pointer to a constant data:
 const int *const ptr = &x;

"sizeof" operator

* C provides the special unary operator "sizeof" to determine the
size in bytes of an array (or any other data type) during program
compilation.
* E.g.
 #include <stdio.h>
 main()
 {
 float array[20];
 printf("The number of bytes in the array is %d\n",
 sizeof(array));
 return 0;
 }
* To determine the number of elements in the array,
 arraysize = sizeof(array) / sizeof(double);
* Operator "sizeof" can be applied to any variable name, type, or
constant.
* When applied to a variable name (that is not an array name) or a
constant, the number of bytes used to store the specific type of
variable or constant is found.
* E.g.
 #include <stdio.h>
 main()
 {
 printf(" sizeof(char) = %d\n"
 " sizeof(short) = %d\n"
 " sizeof(int) = %d\n"
 " sizeof(long) = %d\n"
 " sizeof(float) = %d\n"
 " sizeof(double) = %d\n"
 " sizeof(long double) = %d\n",
 sizeof(char), sizeof(short), sizeof(int),
 sizeof(long), sizeof(float), sizeof(double),
 sizeof(long double));
 return 0;
 }

Pointer Expressions and Pointer Arithmetic
--
* Pointers can be valid operands in arithmetic expressions,
assignment expressions, and comparison expressions.

3

* A pointer may be
 1. incremented (++)
 2. decremented (--)
 3. an integer adds to a pointer (+ or +=)
 4. an integer substracts from a pointer (- or -=)
 5. one pointer substracts from another
* When an integer is added to (or substracted from) a pointer, the
pointer is not simply incremented (or decremented) by the integer,
but by that integer times the size of the object to which the pointer
refers.
* Therefore,
 a = v[20];
and
 a = *(v+20);
is the same, no matter what the type of array "v" is.
* Pointer arithmetic is meaningless unless performed on an array.

* A pointer can be assigned to another pointer if both pointers are
of the same type.
* Otherwise, a cast operator must be used to convert the pointer on
the right of the assignment to the pointer type on the left of the
assignment.
* The exeception to this rule is the pointer to "void" (i.e.,
"void *") which is a generic pointer that can represent any pointer
type.
* A pointer to "void" cannot be dereferenced.

* Pointers can be compared using equality and relational operators.
* This can be meaningless unless the pointers point to members of the
same array.

The Relationship between Pointers and Arrays
--
* An array name can be thought of as a constant pointer.
* Pointers can be used to do any operation involving array indexing.
* E.g.
 int b[5], *bPtr;

 bPtr = b; /* or bPtr = &b[0]; */

 b[3] = 10; /* or *(bPtr + 3) = 10; */
 /* or *(b + 3) = 10; */

 bPtr[1] = 2; /* or b[1] = 2; */
 /* or *(bPtr + 1) = 2; */

 bPtr = &b[3]; /* or bPtr = bPtr + 3; */

* Question: Then "bPtr[1]" = ??
* The "3" in the above expression is the offset to the pointer.
* When the pointer points to the beginning of an array, the offset
value is identical to the array index.
* E.g.
 #include <stdio.h>
 main()
 {
 int i, offset, b[]={10,20,30,40};
 int *bPtr = b;

4

 printf("Array b printed with:\n"
 "Array indexing notation\n");
 for (i=0; i<4; i++)
 printf("b[%d] = %d\n", i, b[i]);

 printf("\nPointer/offset notation where \n"
 "the pointer is the array name\n");
 for (offset=0; offset<4; offset++)
 printf("*(b + %d) = %d\n", offset, *(b+offset));

 printf("\nPointer index notation\n");
 for (i=0; i<4; i++)
 printf("bPtr[%d] = %d\n", i, bPtr[i]);

 printf("\nPointer/offset notation\n");
 for (offset=0; offset<4; offset++)
 printf("*(bPtr + %d) = %d\n", offset,
 *(bPtr+offset));
 return 0;
 }
* E.g.
 #include <stdio.h>
 void copy1(char *, const char *);
 void copy2(char *, const char *);
 main()
 {
 char string1[10], *string2 = "Hello";
 string3[10], string4[] = "Good Bye";

 copy1(string1, string2);
 printf("string1 = %s\n", string1);

 copy2(string3, string4);
 printf("string3 = %s\n", string3);
 return 0;
 }

 void copy1(char *s1, const char *s2)
 {
 int i;
 for (i=0; s1[i] = s2[i]; i++);
 }

 void copy2(char *s1, const char *s2)
 {
 for (; *s1 = *s2; s1++, s2++);
 }

Arrays of Pointers

* Arrays may contain pointers.
* A common use of such a data structure is to form an array of
strings.
* Each entry in an array of strings is actually a pointer to the
first character of a string.
* E.g.
 char *suit[4] = {"Hearts", "Diamonds", "Clubs", "Spades"};
* Each of these strings is stored in memory as a NULL-terminated
character string.

5

* Although it appears as though these strings are being placed in the
"suit" array, only pointers are actually stored in the array.
* Thus, even though the "suit" array is fixed in size, it provides
access to character strings of any length.
* E.g.
 #include <stdio.h>
 #include <stdlib.h>
 #include <time.h>

 void shuffle(int [][13]);
 void deal(const int [][13], const char *[], const char *[]);

 main()
 {
 char *suit[4] = {"Hearts", "Diamonds", "Clubs",
 "Spades"};
 char *face[13] = {"Ace", "Deuce", "Three", "Four",
 "Five", "Six", "Seven", "Eight",
 "Nine", "Ten", "Jack", "Queen",
 "King"};
 int deck[4][13] = {0};

 srand(time(NULL));
 shuffle(deck);
 deal(deck, face, suit);
 return 0;
 }

 void shuffle(int wDeck[][13])
 {
 int card, row, column;

 for (card=1; card<=52; card++)
 {
 row = rand() % 4;
 column = rand() % 13;
 while (wDeck[row][column]!=0)
 {
 row = rand() % 4;
 column = rand() % 13;
 }
 wDeck[row][column] = card;
 }
 }

 void deal(const int wDeck[][13], const char *wFace[],
 const char *wSuit[])
 {
 int card, row, column;
 for (card=1; card<=52; card++)
 for (row=0; row<4; row++)
 for (column=0; column<13; column++)
 if (wDeck[row][column] == card)
 printf("%5s of %-8s%c",
 wFace[column], wSuit[row],
 (card%2)==0?'\n':'\t');
 }

Pointer to Functions

6

* A pointer to a function contains the address of the function in
memory.
* A function name is the starting address in memory of the code that
performs the function's task.
* Pointers to functions can be
 1. passed to functions
 2. returned from functions
 3. stored in arrays
 4. assigned to other function pointers
* E.g.
 void bubble(int *work, const int size,
 int (*compare)(int, int))
 {

 if ((*compare)(work[count], work[count+1]))

 }
* The parameter:
 int (*compare)(int, int)
tells "bubble" to expect a parameter that is a pointer to a function
that receives two integer parameters and returns an integer result.

7

