
Chapter 8: Characters and Strings
=================================
* A string in C is an array of characters ending in the null
character ('\0').
* A string is accessed via a pointer to the first character in the
string.
* The following declarations are the same,
 char color1[] = "blue";
 char *color2 = "blue";
 char color3[] = {'b','l','u','e','\0'};
* When declaring a character array to contain a string, the array
must be large enough to store the string and its terminating "NULL"
character.

* Function "scanf" will read characters until a space, newline, or
end-of-file indicator is encountered.
* E.g.
 scanf("%s", word);

* For a character array to be printed as a string, the array must
contain a terminating "NULL" character.

Character Handling Library

* The character handling library includes several functions that
perform useful tests and manipulations of character data.
* "EOF" normally has the value "-1" and some hardware architectures
do not allow negative values to be stored in "char" (0-255)
variables.
* Therefore, the character handling functions manipulate characters
as integers.
* When using functions from the character handling library, include
the "<ctype.h>" header file.
 int isdigit(int c) true if c is a digit
 int isalpha(int c) true if c is a letter
 int isalnum(int c) true if c is a digit or a letter
 int isxdigit(int c) true if c us a hexadecimal digit
 character
 int islower(int c) true if c is a lowercase letter
 int isupper(int c) true if c is an uppercase letter
 int tolower(int c) return lowercase of c
 int toupper(int c) return uppercase of c
 int isspace(int c) true if c is a white-space
 character
 int iscntrl(int c) true if c is a control character
 int ispunct(int c) true if c is a printing character
 other than a space, a digit, or a
 letter, and 0 otherwise
 int isprint(int c) true if c is a printing character
 including space
 int isgraph(int c) true if c is a printing character
 other than space

String Conversion Functions

* The string conversion functions is come from the general utilities
library ("stdlib").
* When using functions from the general utilities library, include
the "<stdlib.h>" header file.
 double atof(const char *nPtr) converts the string nPtr to

1

 double
 int atoi(const char *nPtr) converts the string nPtr to
 int
 long atol(constr char *nPtr) converts the string nPtr to
 long int
 double strtod(const char *nPtr, char **endPtr)
 converts the string nPtr to
 double
 long strtol(const char *nPtr, char **endPtr, int base)
 converts the string nPtr to
 long
 unsigned long strtoul(const char *nPtr, char **endPtr, int base)
 converts the string nPtr to
 unsigned long
* If the converted value cannot be represented, the behavior is
undefined.
* "**endPtr" is the pointer of the location of the first character
after the converted portion of the string.
* E.g.
 #include <stdio.h>
 #include <stdlib.h>
 main()
 {
 double d;
 char *string = "51.2% are admitted";
 char *stringPtr;

 d = strtod(string, &stringPtr);
 printf("The string \"%s\" is converted to the\n",
 string);
 printf("double value %.2f and the string \"%s\"\n",
 d, stringPtr);
 return 0;
 }
* "base" can be specified as 0(any base), or any value between 2 and
36.

Standard Input/Output Library Functions

* When using functions from the standard input/output library,
include the <stdio.h> header file.
 int getchar(void) input the next character from the
 standard input and return it as integer
 char *gets(char *s) input characters from the standard input
 into the array s until a newline or EOF
 is encountered. A terminating NULL
 character is appended to the array.
 int putchar(int c) Print the character stored in c
 int puts(const char *s) Print the string s followed by a newline
 character
 int sprintf(char *s, const char *format, ...)
 Equivalent to printf except the output is
 stored in the array s instead of printing
 on the screen.
 int sscanf(char *s, const char *format, ...)
 Equivalent to scanf except the input is
 read from the array s instead of reading
 from the keyboard

2

String Manipulation Functions of the String Handling Library
--
* When using functions from the string handling library, include the
<string.h> header file.
 char *strcpy(char *s1, const char *s2)
 Copies the string s2 into the array s1.
 The value of s1 is returned
 char *strncpy(char *s1, const char *s2, size_t n)
 Copies at most n characters of the string
 s2 into the array s1. The value of s1 is
 returned
 char *strcat(char *s1, const char *s2)
 Appends the string s2 to the array s1.
 The first character of s2 overwrites the
 terminating NULL character of s1. The
 value of s1 is returned
 char *strncat(char *s1, const char *s2, size_t n)
 Appends at most n characters of the
 string s2 to the array s1. The first
 character of s2 overwrites the
 terminating NULL character of s1. The
 value of s1 is returned

Comparison Functions of the String Handling Library

 int strcmp(const char *s1, const char *s2)
 Compares the string s1 to the string s2.
 The function returns 0, less than 0 (-1),
 or greater than 0 (1) if s1 is equal to,
 less than, or greater than s2,
 respectively
 int strncmp(const char *s1, const char *s2)
 Compares up to n characters of the string
 s1 to the string s2. The function returns
 0, less than 0 (-1), or greater than 0
 (1) if s1 is equal to, less than, or
 greater than s2, respectively
* When the computer compares two strings, it actually compares the
numeric codes of the characters in the strings.

Memory Functions of the String Handling Library

* The functions treat blocks of memory as character arrays.
* These functions can manipulate any block of data.
 void *memcpy(void *s1, const void *s2, size_t n)
 Copies n characters from the object
 pointed to by s2 into the object pointed
 to by s1. A pointer to the resulting
 object is returned.
 void *memmove(void *s1, const void *s2, size_t n)
 Copies n characters from the object
 pointed to by s2 into the object pointed
 to by s1. The copy is performed as if the
 characters are first copied from the
 object pointed to by s2 into a temporary
 array, then from the temporary array into
 the object pointed to by s1. A pointer to
 the resulting object is returned.
 int memcmp(const void *s1, const void *s2, size_t n)

3

 Compares the first n characters of the
 object pointed to by s1 and s2. The
 function return 0, less than 0 (-1), or
 greater than 0 (1) if s1 is equal to,
 less than, or greater than s2
 void *memchr(const void *s, int c, size_t n)
 Locates the first occurence of c
 (converted to unsigned char) in the first
 n charcters of the object pointed to by
 s. If c is found, a pointer to c in the
 object is returned. Otherwise NULL is
 returned.
 void *memset(void *s, int c, size_t n)
 Copies c (converted to unsigned char)
 into the first n characters of the object
 pointed to by s. A pointer to the result
 is returned.

Other Functions of the String Handling Library
--
 char *strerror(int errornum) Maps errornum into a full text
 string in a system dependent
 manner. A pointer to the string
 is returned.
 size_t strlen(const char *s) Determines the length of string
 s. The number of characters
 preceding the terminating NULL
 character is returned.
* The message generated by "strerror" is system dependent.

4

