
Chapter 10: Structures, Unions and Bit Manipulations
==

Introduction

* structure are collections of related variables under one name.
* structure may contain variables of many different data types - in
contrast to arrays that
contain only elements of the same data type.
* similar to record to be stored in files.
* pointers and structures facilitate the formation of more complex
data
structures such as linked lists, queues, stacks, and trees.

Definitions

* e.g.
 struct card
 {
 char *face;
 char *suit;
 };
* "struct" - structure definition
* "card" - structure tag, not structure type
* the structure type is "struct card"
* "face" and "suit" - structure members: can be variable of basic data
types, arrays, pointers and other structures
* ";" is important to end the definition of structure
* a structure cannot contain an instance of itself, but a pointer can
be included
* structure variables:
 struct card a, deck[52], *cPtr;
* or incorporated into the "struct card":
 struct card
 {
 char *face;
 char *suit;
 } a, desk[52], *cPtr;

Initializing Structures

* using initializer lists as with arrays
* e.g.
 struct card a = {"Three", "Hearts"};
* member "face" to "Three", member "suit" to "Hearts"

Accessing Members

* structure member operator: "." - access via structure variable name
* e.g.
 printf("%s", a.suit);
* structure pointer operator: "->" - access via structure pointer
* e.g.
 printf("%s", cPtr->suit);
* equivalent to
 printf("%s", (*cPtr).suit);
* e.g.
 #include <stdio.h>

 struct card
1

 {
 char *face;
 char *suit;
 }

 main()
 {
 struct card a;
 struct card *aPtr;

 a.face = "Ace";
 a.suit = "Spades";
 aPtr = &a;
 printf("%s%s%s\n%s%s%s\n%s%s%s\n",
 a.face, " of ", a.suit,
 aPtr->face, " of ", aPtr->suit,
 (*aPtr).face, " of ", (*aPtr).suit);
 }

Typedef

* creating alias for defined data type
* e.g.
 typedef struct card Card;
* "Card" is alias for type "struct card", so it is structure type, not
structure
tag
* e.g.
 typedef struct
 {
 char *face;
 char *suit;
 } Card;
* structure variable:
 Card a, deck[52], *cPtr;
* e.g.
 #include <stdio.h>
 #include <stdlib.h>
 #include <time.h>

 struct card
 {
 char *face;
 char *suit;
 };

 typedef struct card Card;

 void fillDeck(Card *, char *[], char *[]);
 void shuffle(Card *);
 void deal(Card *);

 main()
 {
 Card deck[52];
 char *face[] = {"A", "2", "3", "4", "5", "6", "7", "8", "9",
 "10", "J", "Q", "K"};
 char *suit[] = {"Hearts", "Diamonds", "Clubs", "Spades"};

2

 srand(time(NULL));

 fillDeck(deck, face, suit);
 shuffle(deck);
 deal(deck);
 }

 void fillDeck(Card *wDeck, char *wFace[], char *wSuit[])
 {
 int i;

 for (i=0;i<52;i++)
 {
 wDeck[i].face = wFace[i%13];
 wDeck[i].suit = wSuit[i/13];
 }
 }

 void shuffle(Card *wDeck)
 {
 int i,j;
 Card temp;

 for (i=0;i<52;i++)
 {
 j = rand() % 52;
 temp = wDeck[i];
 wDeck[i] = wDeck[j];
 wDeck[j] = temp;
 }
 }

 void deal(Card *wDeck)
 {
 int i;

 for (i=0;i<52;i++)
 {
 printf("%5s of %-8s%c", wDeck[i].face, wDeck[i].suit,
 (i+1)%2?'\t':'\n');
 }
 }

Unions

* members share the same storage space
* for different situations in a program, some variables may not be
relevant, but other are
* a union shares the space instead of wasting storage on variables
that are not being used
* members can be of any type
* the number of bytes used to store a union must be at least enough to
hold the largest member
* only one member can be referenced at a time
* e.g.
 union number
 {
 int x;

3

 float y;
 }

Initializing Union

* only with a value of the first union member
* e.g.
 union number value = {10};

Accessing Members

* same as structure
* e.g.
 union number value;

 value.x = 100;
 printf("%d", value.x);

 value.y = 100.0;
 printf("%f", value.y);

Bitwise Operators

* bit is the basic representation in computer
* can be either "0" or "1"
* "unsigned" are normally used

* left shift (<<)
 e.g.
 int y,x = 20; /* 20(10) = 00010100(2) */
 y = x << 3; /* 160(10) = 10100000(2) */
* left shift can be used a "quick" multiplication of 2^n

* right shift (>>)
 e.g.
 int y,x = 20; /* 20(10) = 00010100(2) */
 y = x >> 3; /* 2(10) = 00000010(2) */
* right shift can be used a "quick" (integer) division of 2^n

* bitwise AND (&)
 Operands Result
 0 0 0
 0 1 0
 1 0 0
 1 1 1
* AND can be used as mask: to hide some bits in a value while
selecting other bits
* e.g.
 #include <stdio.h>
 void displayBits(unsigned value);

 main()
 {
 unsigned x;

 printf("Enter an unsigned integer: ");
 scanf("%u", &x);
 displayBits(x);
 }

4

 void displayBits(unsigned value)
 {
 unsigned c, displayMask = 1 << 15;

 printf("%7u = ", value);
 for (c=1;c<=16;c++)
 {
 putchar(value & displayMask ? '1' : '0');
 value <<= 1;
 if (c%8 == 0)
 putchar(' ');
 }

 putchar('\n');
 }

* bitwise OR (|)
 Operands Result
 0 0 0
 0 1 1
 1 0 1
 1 1 1
* OR can be used to set specific bits to 1 in an operand

* NOT or complement(~)
 Operands Result
 0 1
 1 0
* NOT can be used as taking the one's complement of the operand

* bitwise Exclusive OR (^)
 Operands Result
 0 0 0
 0 1 1
 1 0 1
 1 1 0
* exclusive OR can be used as a encode and decode process since for
any bit-stream T,
 T ^ K ^ K = T, where K is the key
* so E = T ^ K can be considered as the encoded bit-stream of T by key
K
* the decoder can recover the origin bit-stream T by
 E ^ K = T
* this is basically the same process of encoder
e.g.
 void encoder(char T[], char K[], char E[])
 {
 int i;

 for (i=0;i<2;i++)
 {
 E[i] = T[i] ^ K[i];
 }
 }
* however, the encoded bit-stream, E, may not be represented by ASCII
* we can remedy the situation by padding zero in the beginning of each
of four bits and add 33 (the first character code of ASCII)
* e.g.

5

 void padding(char E[], char PE[])
 {
 unsigned char lowmask = 15;
 unsigned char highmask = 15 << 4;
 int i;

 for (i=0;i<2;i++)
 {
 PE[i*2] = (E[i] & lowmask) + 33;
 PE[i*2+1] = ((E[i] & highmask) >> 4) + 33;
 }

 PE[i*2] = '\0';
 }
* the encoding program is
* e.g.
 #include <stdio.h>
 void encoder(char T[], char K[], char E[]);
 void padding(char E[], char PE[]);

 main()
 {
 char Text[3], Key[3], EncodedText[3], OutText[5];

 printf("Input the message: ");
 scanf("%s",Text);
 printf("Input the key: ");
 scanf("%s",Key);

 encoder(Text, Key, EncodedText);
 padding(EncodedText, OutText);

 printf("The secret message is: %s\n",OutText);
 }
* each bitwise operator (except the bitwise complement operator) has a
corresponding assignment operator:
 &=, |=, ^=, <<=, >>=

Enumeration Constants

* An enumeration, introduced by the keyword "enum", is a set of
integer constants represented by identifiers.
* The values in an "enum" start with 0, unless specified otherwise,
and are incremented by 1.
* E.g.
 enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL,
 AUG, SEP, OCT, NOV, DEC};
creates a new type, "enum months", in which the identifiers are set
automatically to the integer 0 to 11.
* To number the months 1 to 12, use
 enum months {JAN = 1, FEB, MAR, APR, MAY, JUN, JUL,
 AUG, SEP, OCT, NOV, DEC};
* E.g.
 #include <stdio.h>

 enum months {JAN = 1, FEB, MAR, APR, MAY, JUN,
 JUL, AUG, SEP, OCT, NOV, DEC};

6

 main()
 {
 enum months month;
 char *monthName[] = {"", "January", "February", "March",
 "April", "May", "June", "July",
 "August", "September", "October",
 "November", "December"};

 for (month = JAN; month <= DEC; month++)
 printf("%2d%11s\n", month, monthName[month]);

 return 0;
 }

Exercise
========
1. Try to write the decoding program.
2. Try to decode "0&,&" by the key "00"

7

