Chapter 11: File Processing

* Storage of data in variables and arrays is tenmporary; all such data
is | ost when a programterninates

* Files are used for pernmanent retention of |arge anmpunts of data
since they are stored on secondary storage devices, especially disk
st orage devi ces.

Data Hierarchy

* bit: the smallest data itemin a conputer, either "0" or "1"

* character: digits, letters, and special synbols; represented as a
pattern of

bits; commonly conposed of eight bits

* field: a group of characters that conveys neaning

* record (struct): conposed of several related fields

* file: a group of related record

* to facilitate the retrieval of specific records froma file, at
| east one field in each record is chosen as a record key

* a record key identifies a record as belonging to a particul ar
entity.

* dat abase: a group of related files

Files and Streans
* Cviews each file sinply as a seqgiential stream of bytes.
* Each file ends with an "end-of-file" (EOF) marker.
* When a file is opened, a streamis associated with the file.
* Three file are automatically opened:
0. standard input (stdin): data from keyboard
1. standard output (stdout): data to screen
2. standard error (stderr): data to error device (usually screen)

* pening a file returns a pointer to a "FILE" structure (defined in
<stdio.h>) that contains information used to process the file.

* Function "fgetc", which receives as an argunent a "FILE" pointer
reads one character fromthat file.

* "fgetc(stdin)" is equivalent to "getchar()".

* Function "fputc" receives as argunents a character to be witten and
a pointer for the file to which the character will be witten.

* "fputc('a', stdout)" is equivalent to "putchar('a')"

* "fgets" and "fputs" can be used to read a line froma file and wite
alinetoafile, respectively, simlar to "gets" and "puts" for
"stdin" and "stdout".

Sequential Access Files

* C inmposes no structure on a file.

* E g.
#i ncl ude <stdio. h>
mai n()
{
i nt account;

char nane[30];

fl oat bal ance;
FILE *cfPtr; /* cfPtr = clients.dat file pointer */

if ((cfPtr = fopen("clients.dat", "w')) == NULL)
printf("File could not be opened\n");
el se {

printf("Enter the account, name, and bal ance.\n");
printf("Enter EOF to end input.\n");

printf("? ");

scanf ("%l%% ", &account, nane, &bal ance);

while (!feof(stdin)) {
fprintf(cfPtr, "% % % 2f\n",
account, name, bal ance);
printf("? ");
scanf ("%l%% ", &account, nane, &bal ance);

}

fclose(cfhtr);
}

return O;

}

* file position pointer - indicating the nunber of the next byte in
the file to be read or witten

* FILE *fd;

* C program administers each file with a separate "FILE" structure.
* fd = fopen("file.txt","r");

* Function "fopen(..)" takes two argunents: a file nane and a file

open node

* nodes:
“r" - open for reading
"wW' - create or erase for witing
"a" - append for witing at the end of file
"r+" - open for update (reading and writing)
"w+" - create or erase for update
"a+" - append for update at the end of file

* |f an error occurs, "fopen" returns "NULL".

* feof (fd); to determ ne whether the end-of-file indicator is set for
that file.

* The end-of-file indicator inforns the programthat there is no nore
data to be processed.

* fprintf(fd, "% % %\ n", id, name, bal ance);

* Function "fprintf" is equivalent to "printf" except that "fprintf"
al so receives as argunent a file pointer for the file to which the
data will be witten.

* fclose(fd);

* "fclose(..)" the file of file pointer as an argunent.

* |f function "fclose" is not called explicitly, the CS normally will
close the file when the program execution term nates.

Readi ng Data from a Sequential Access File

*E g
#i ncl ude <stdio. h>
mai n()
{

int account;

char nane[30];

fl oat bal ance;

FILE *cfPtr; /* cfPtr = clients.dat file pointer */

if ((cfPtr = fopen("clients.dat", "r")) == NULL)
printf("File could not be opened\n");

el se {
printf("% 10s% 13s%s\n", "Account”, "Nane", "Bal ance");

fscanf(cfPtr, "%%% ", &account, nane, &bal ance);

while (!feof (cfPtr)) {
printf ("% 10d% 13s% . 2f\ n", account, nanme, bal ance);
fscanf(cfPtr, "%%% ", &account, nane, &bal ance);

}
fclose(cfhtr);
}
return O,

}

* fscanf(fd, "% % %\ n", &, nane, &z);

* Function "fscanf" is equivalent to "scanf" except that "fscanf" also
receives as argunment a file pointer for the file fromwhich the data
will be read.

* To retrieve data sequentially froma file, a programnormally starts
reading fromthe beginning of the file, and reads all data
consecutively until the desired are found.

* remind(fd); causes a programis file position pointer to be
repositioned to the beginning of the file pointed by "fd"

* E g.
#i ncl ude <stdi o. h>
mai n()
{

i nt request, account;
fl oat bal ance;
char nane[30];

FILE *cfPtr;

if ((cfPtr = fopen("clients.dat", "r")) == NULL)
printf("File could not be opened\n");

el se {

printf("Enter request\n"
" 1 - List accounts with zero bal ances\n"
" 2 - List accounts with credit bal ances\n"
" 3 - List accounts with debit bal ances\n"
" 4 - End of run\n? ");

scanf ("%l", &request);

while (request !'= 4) {
fscanf(cfPtr, "%%% ", &account, nane, &bal ance);

switch (request) {
case 1:
printf("\nAccounts with zero bal ances:\n");

3

while (!feof (cfPtr)) {

if (balance == 0)
printf ("% 10d% 13s%. 2f\ n",
account, name, bal ance);

fscanf(cfPtr, "%%% ",
&account, name, &bal ance);

}

br eak;
case 2:
printf("\nAccounts with credit bal ances:\n");

while (!feof (cfPtr)) {

if (balance < 0)
printf ("% 10d% 13s%. 2f\ n",
account, name, bal ance);

fscanf(cfPtr, "%%% ",
&account, name, &bal ance);

}

br eak;
case 3:
printf("\nAccounts with debit bal ances:\n");

while (!feof (cfPtr)) {
if (balance > 0)
printf ("% 10d% 13s%. 2f\ n",
account, name, bal ance);

fscanf(cfPtr, "%%% ",
&account, name, &bal ance);

}

br eak;

}

rewi nd(cfPtr);
printf("\n? ");
scanf ("%l", &request);

}

printf("End of run.\n");
fclose(cfhtr);

}

return O;

}

* sequential file cannot be nodified without the risk of destroying
other data in the file.
* e.g. The record for "Wite" was witten to the file as

300 Wiite 0.00
* |f the record is rewitten beginning at the sane location in the
file using the new nane, the record becone,

300 Wort hington 0.00
* New record is larger than the original record. The characters beyond
the second "o0" in "Wrthington" would overwite the beginning of the
next sequential record in the file.
* sequential access with "fprint" and "fscanf" is not usually used to
update records in place, but the entire file is usually rewitten.

Random Access Fil es

* individual records are fixed in length

* may be accessed directly without searching through other records

* the exact location of a record relative to the beginning of the file
can be calculated as a function of the record key

* data can be inserted in a randonly accessed file w thout destroying
other data in the file

Creating a Randomy Accessed File
* Function "fwite" transfers a specified nunber of bytes beginning at
a specified location in menory to a file.
* Function "fread" transfers a specified nunber of bytes fromthe
location in the file specified by the file position pointer to an area
in menory beginning with a specific address.
* Conpare:

1. fprintf(fPtr, "%", nunber);

2. fwite(&unber, sizeof(int), 1, fPtr);
* The data handl ed by "fread" and "fwite" is processed in conputer
"raw data" format (i.e. bytes of data) rather than in hunman-readabl e
format.

* file processing prograns rarely wite a single field to a file; they
wite one "struct" at a time
* E g.

#i ncl ude <stdio. h>

struct clientData {
int acct Num
char | ast Nane[15] ;
char firstNane[10];
fl oat bal ance;

i

mai n()

{ . .
int i;
struct clientbData blanklient = {0, "", "", 0.0};
FILE *cfPtr;

if ((cfPtr = fopen("credit.dat", "w')) == NULL)
printf("File could not be opened.\n");
el se {

for (i = 1; i <= 100; i++)
fwrite(&l ankd i ent,
si zeof (struct clientData), 1, cfPtr);

fclose (cfPtr);

return O;

}

"fwite(...)" wites a block of data to a file

"&l ankCient" is the address of bl ock

"sizeof (struct clientData)" is the size of block in byte

"1" is the nunmber of block to wite

"cfPtr" is the file pointer

e.g. fwite(&unber, sizeof(int), 1, fPtr);

Function "fwite" can actually be used to wite several elenents of
an array of objects.

* To wite several array elenents, the programrer supplies a pointer
to an array as the first argunent in the call to "fwite", and
specifies the nunber of elenents to be witten as the third argunent.

* % %k X % X X

Witing Data Randomy to a Randonmly Accessed File

#i ncl ude <stdi o. h>

struct clientData {
int acct Num
char | ast Nane[15] ;
char firstNane[10];
fl oat bal ance;

i
mai n()
{
FILE *cfPtr;
struct clientData client;
if ((cfPtr = fopen("credit.dat", "r+")) == NULL)
printf("File could not be opened.\n");
el se {
printf("Enter account nunber”
" (1 to 100, O to end input)\n? ");
scanf ("%l", &client.acctNum;
while (client.acctNum!= 0) {
printf("Enter |lastnane, firstnane, bal ance\n? ");
scanf ("%%% ", &client.|astNane,
&client.firstNanme, &client. bal ance);
fseek(cfPtr, (client.acctNum- 1) *
si zeof (struct clientData), SEEK SET);
fwite(&client, sizeof(struct clientData), 1, cfPtr);
printf("Enter account nunber\n? ");
scanf ("%l", &client.acctNum;
}
}
fclose(cfPtr);
return O,
}

* "fseek(...)" sets the file position pointer to a specific position
inthe file

* "cfPtr" is the file pointer

* "(client.acctNum- 1) * sizeof(struct clientData)" is the offset or
t he di spl acenent

* "SEEK SET" indicates that the file position pointer is positioned
relative to the beginning of the file by the anbunt of the offset

* "SEEK CUR' indicates that the seek starts at the current location in
the file

* "SEEK END' indicates that the seek starts at the end of the file

Readi ng Data Randomly from a Random Accessed File

*E g
#i ncl ude <stdio. h>
struct clientData {
int acct Num
char | ast Nane[15] ;
char firstNane[10];
fl oat bal ance;
i
mai n()
{
FILE *cfPtr;
struct clientData client;
if ((cfPtr = fopen("credit.dat", "r")) == NULL)
printf("File could not be opened.\n");
el se {
printf("%6s% 16s% 11s%d0s\n", "Acct", "Last Nane",
"First Nane", "Bal ance");
while (!feof (cfPtr)) {
fread(&client, sizeof(struct clientData), 1, cfPtr);
if (client.acctNum!= 0)
printf("% 6d% 16s% 11s%d.0. 2f\ n",
client.acctNum client.|astNane,
client.firstNane, client. bal ance);
}
}
fclose(cfhtr);
return O,
}
* "fread(...)" reads a specified nunber of bytes froma file
* "&client" is the struct variable to store the read data
* "sjzeof (struct clientData)" is the size of block in byte
* "1" is the nunmber of block to be read
*

"cfPtr" is the file pointer

Execri se

1. Wite the "sel ectRecord" programto read a particular record only
after the user input the account nunber.

2. Conbine "Create", "Wite", "Report" and "Search" into a program and
use a nenu for user to choose. "Report" should al so generate a file
report.

