Chapter 13: The Preprocessor

* Preprocessing occurs before a programis conpil ed.
* Possi bl e actions:

1. inclusion of other files

2. definition of synmbolic constants and macros

3. definition of conditional conpilation

4. conditional execution of preprocessor directives
* Al preprocessor directives begin with "#"

The "#include" Preprocessor Directive

* The "#include" directive causes a copy of a specified file to be

i ncluded in place of the directive.

* Two forns:
1. #include <filenane> : the preprocessor searches through
predesi gnated directories, in an inplenentation-dependent
manner, e.g., standard library header files.
2. #include "filenanme" : the preprocessor searches in the sane
directory as the file being conpiled for the file to be
i ncl uded, e.g. progranmmrer-defined header files.

* The "#include" directive is used with prograns consisting of severa
source files that are to be conpil ed together
* A header file containing declarations comopn to the separate files.

The "#define" Preprocessor Directive: Synbolic Constants
* The "#define" directive creates synbolic constants - constants
represented as synbols, and nmacros - operations defined as synbol s.
* The format:

#define identifier replacenent-text
* When this line appears in a file, all subsequent occurences of

"identifier" will be replaced by "replacenent-text" automatically
before the programis conpil ed.
* E g.

#define Pl 3.14159

* Synbolic constants enable the progranmmer to create a name for a
constant and use the nanme throughout the program

* | f the constant needs to be nodified throughout the program it can
be nodified once in the "#define" directive

* When the programis reconpiled, all occurrence of the constant in
the programw || be nodified automatically.

The "#define" Preprocessor Directive: Macros
* Amacro is an operation defined in a "#define" preprocessor
directive.
* As with synbolic constants, the macro-identifier is replaced in the
programwi th the replacenent-text before the programis conpil ed.
* Macro may be defined with or without argunents.
* A macro without argunents is processed |ike a synbolic constant.
* |n a nmacro with argunents, the argunents are substituted in the
repl acenent text, then the macro i s expanded.
* E g.

#define ClRCLE_AREA(Xx) (PI * (x) * (x))

area = Cl RCLE_AREA(4);
is expanded to (before compile tine),

area = (3.14159 * (4) * (4));
* The parentheses around each "x" in the replacenent text force the
proper order of evaluation when the nacro argunent is an expression
* E g.

area = Cl RCLE_AREA(c+2);
i s expanded to

area = (3.14159 * (c+2) * (c+2));

*

Macro "Cl RCLE_AREA" coul d be defined as a function

* E g.
doubl e circl eArea(doubl e x)
{
return 3.14159 * x * x;
}

*

But the overhead is associated with the function.
A di sadvantage of macro is that its argunment is eval uated twice.

*

* |f the replacenent text for a macro or synbolic constant is |onger
than the remai nder of the line, a bachslash (\) nust be placed at the
end of the Iine.

* Synbolic constants and nmacros can be discarded using the "#undef"
preprocessor directive.
* Once undefined, a nane can be redefined with "#define"

Condi tional Conpilation
* Conditional conpilation enables the programmer to control the
execution of preprocessor directives, and the conpilation of program
code.
* Each of the conditional preprocessor directives eval uates a constant
i nt eger expression.
* E g.

#i f ldefined(NULL)

#define NULL O

#endi f
* |f NULL is not defined, it is defined by "#define NULL 0"
* |f it is defined, the "#define" directive is skipped.
* Every "#if" ends with "#endif".

* Directives "#i fdef nane" and "#i fndef nane" are shorthand for "#if
define(nane)" and "#if !defined(nane)" respectively.

* Anultiple-part conditional preprocessor nay be tested using the
"#elif" and the "#el se" directives.

* To comment out a large portions of code with coment,

#if O
code prevented from conpiling
#endi f

* To insert sone debuggi ng statenent, you may
#i f def DEBUG
printf("Variable x = %@\n", x);
#endi f

The "#error" and "#pragnma" Preprocessor Directives

* The "#error" directive
#error tokens

prints an inpl enentati on-dependent nessage including the token
specified in the directive.

* The "#pragma" directive
#pragma t okens
cause an i npl enmentation-defined action

Predefi ned Synbolic Constants

* There are five predefined synbolic constant.

__LINE__ The Iine nunber of the current source code |ine.
__FILE The presuned nane of the source file.

__DATE The date the source file is conpiled

__TIME The tine the source file is conpiled

__STDC__ The indicator of ANSI conpliant if it is 1.

Assertions
* The "assert" macro - defined in the "assert.h" header file - tests
t he val ue of an expression.
* The the value of expression is 0, then "assert" prints an error
nmessage and calls function "abort" (of "stdlib.h") to term nate
pr ogram executi on.
* E g.

assert(x <= 10);
* |f "x" is greater than 10, an error nessage containing the |ine
nunber and file nane is printed, and the programterni nates.
* When assertions are no |onger needed, the |line

#def i ne NDEBUG
is inserted in the programfile rather than del eting each assertion
manual | y.

