
Chapter 14: Advanced Topics
===========================

Variable-Length Argument Lists

* The function prototype for "printf" is
 int printf(const char *format, ...);
* The ellipsis ("..."), which must be at the end of the parameter
list, indicates that the function receives a variable number of
arguments of any type.
* The macro and definitions of the variable arguments header
"stdarg.h" provide the capabilities necessary to build these
functions.
 va_list A type suitable for holding information needed by
 macros "va_start", "va_arg", and "va_end". To access
 the arguments in a variable-length argument list, and
 object type "va_list" must be declared.
 va_start A macro that is invoked before the arguments of a
 variable-length argument list can be accessed.
 va_arg A macro that expands to an expression of the value and
 type of the next argument in the variable-length
 argument list.
 va_end A macro that facilitates a normal return from a
 function whose variable-length argument list was
 referred to by the "va_start" macro.

* E.g.
 #include <stdio.h>
 #include <stdarg.h>

 double average(int, ...);

 main()
 {
 double w = 37.5, x = 22.5, y = 1.7, z = 10.2;

 printf("%s%.1f\n%s%.1f\n%s%.1f\n%s%.1f\n\n",
 "w = ", w, "x = ", x, "y = ", y, "z = ", z);
 printf("%s%.3f\n%s%.3f\n%s%.3f\n",
 "The average of w and x is ",
 average(2, w, x),
 "The average of w, x, and y is ",
 average(3, w, x, y),
 "The average of w, x, y, and z is ",
 average(4, w, x, y, z));

 return 0;
 }

 double average(int i, ...)
 {
 double total = 0;
 int j;
 va_list ap;

 va_start(ap, i);

 for (j = 1; j <= i; j++)
 total += va_arg(ap, double);

1

 va_end(ap);
 return total / i;
 }

Using Command-Line Arguments

* It is possible to pass arguments to "main" from a command line by
including parameter "int argc" and "char *argv[]" in the parameter
list of "main".

* Parameter "argc" receives the number of command-line arguments.
* Parameter "argv" is an array of string in which the actual command-
line arguments are stored.
* E.g.
 #include <stdio.h>

 main(int argc, char *argv[])
 {
 FILE *inFilePtr, *outFilePtr;
 int c;

 if (argc != 3)
 printf("Usage: copy infile outfile\n");
 else
 if ((inFilePtr = fopen(argv[1], "r")) != NULL)

 if ((outFilePtr = fopen(argv[2], "w")) != NULL)

 while ((c = fgetc(inFilePtr)) != EOF)
 fputc(c, outFilePtr);

 else
 printf("File \"%s\" could not be opened\n",
 argv[2]);

 else
 printf("File \"%s\" could not be opened\n", argv[1]);

 return 0;
 }

Notes on Compiling Multiple-Source-File Programs
--
* Global variables are accessible to functions in other files,
however, the global variables must be declared in each file in which
they are used.

* E.g., if integer variable "flag" is defined in one file, and refer
to it in a second file, the second file must contain the declaration
 extern int flag;
prior to the variable's use in that file.

* The storage class specifier "extern" indicates to the compiler that
variable "flag" is defined either later in the same file or in a
different file.
* The compiler informs the linker that unresolved references to

2

variable "flag" appear in the file.

* The function prototype can be included in each file in which the
function is invoked, and compiling the files together.
* The function can be implementated in one of the files.
* E.g., "printf" and "scanf" in "stdio.h".

More on Files

* C provides capabilities for processing binary files, when the file
is opened in a binary file mode.
 rb Open a binary file for reading.
 wb Open a binary file for writing.
 ...

3

