Chapter 14: Advanced Topics

Vari abl e-Length Argunent Lists
* The function prototype for "printf" is
int printf(const char *fornmat, ...);
* The ellipsis ("..."), which nust be at the end of the paraneter
list, indicates that the function receives a variable nunber of
argunents of any type.
* The macro and definitions of the variabl e argunents header
"stdarg. h" provide the capabilities necessary to build these
functions.
va_|ist A type suitable for holding informati on needed by
macros "va_start", "va_arg", and "va_end". To access
the argunments in a variable-length argunent |ist, and
object type "va_list" nust be decl ared.

va_start A macro that is invoked before the argunents of a
vari abl e-1 ength argunment |ist can be accessed.
va_arg A macro that expands to an expression of the value and

type of the next argument in the variable-length
argunent |ist.

va_end A macro that facilitates a normal return froma
function whose variable-length argunent |ist was
referred to by the "va_start" macro.

* E g.
#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

doubl e average(int, ...);
mai n()
double w = 37.5, x = 22.5, y =1.7, z = 10. 2;

printf("%% 1f\n%% 1f\n%% 1f\ n%% 1f\ n\ n",
"w=",w "x=",x, "y=",vy, "z=" 2);

printf("%% 3f\n%% 3f\n%% 3f\n",

"The average of wand x is ",

average(2, w, Xx),

"The average of w, x, and y is ",

average(3, w, X, V),

"The average of w, x, y, and z is ",

average(4, w, X, Yy, 2));

return O,
}
doubl e average(int i, ...)
{

doubl e total = O;
int j;
va_list ap;

va_start(ap, i);
for (j =1;] <=1i; j+4+)

total += va_arg(ap, double); 1

va_end(ap);
return total [/ i;

}

Usi ng Conmand- Li ne Argunents

* |t is possible to pass argunents to "main" froma command |ine by
i ncludi ng paraneter "int argc" and "char *argv[]" in the paraneter
[ist of "main".

* Paraneter "argc" receives the nunber of command-line argunents.
* Paraneter "argv" is an array of string in which the actual command-
line arguments are stored.
* E g.
#i ncl ude <stdio. h>

mai n(int argc, char *argv[])

{
FILE *inFilePtr, *outFilePtr;
int c;
if (argc !'= 3)
printf("Usage: copy infile outfile\n");
el se
if ((inFilePtr = fopen(argv[1], "r")) !'= NULL)
if ((outFilePtr = fopen(argv[2], "w')) != NULL)
while ((c = fgetc(inFilePtr)) !'= EOF)
fputc(c, outFilePtr);
el se
printf("File \"9%\" could not be opened\n",
argv[2]);
el se
printf("File \"%\" could not be opened\n", argv[1]);
return O,
}

Not es on Conpiling Miltiple-Source-File Prograns

* G obal variables are accessible to functions in other files,
however, the gl obal variables must be declared in each file in which
t hey are used.

* E.g., if integer variable "flag" is defined in one file, and refer

toit in a second file, the second file nust contain the declaration
extern int flag;

prior to the variable's use in that file.

* The storage class specifier "extern" indicates to the conpiler that
variable "flag" is defined either later in the same file or in a
different file.

* The conpiler inforns the |inker that unresolved references to

2

variable "flag" appear in the file.

* The function prototype can be included in each file in which the
function is invoked, and conpiling the files together

* The function can be inplenentated in one of the files.

* E.g., "printf" and "scanf" in "stdio.h".

More on Files
* C provides capabilities for processing binary files, when the file
is opened in a binary file node.

rb pen a binary file for reading.

wh pen a binary file for witing.

